DECON GREENTM George W. Wagner, Lawrence R. Procell, Vikki D. Henderson, David C. Sorrick, Zoe A. Hess, David G. Gehring and Mark D. Brickhouse U.S. Army Edgewood Chemical Biological Center Aberdeen Proving Ground, MD 21010 Decon GreenTM is a hydrogen peroxide-based decontaminant designed to replace DS2 and affords the broad-spectrum decontamination of chem/bio agents. Composed entirely of ingredients commonly found in cosmetics, detergents, laundry boosters and vitamins, Decon GreenTM is extremely environmentally friendly and leaves no toxic residues. Decon GreenTM retains the low temperature decontamination ability of DS2, but is non-corrosive to aluminum and steel. Decon GreenTM is less harsh than DS2 on CARC-painted surfaces, yet provides a more thorough decontamination efficacy. The penetrating ability of Decon GreenTM's excellent solvent system provides for the unsurpassed decontamination of both hard and soft surfaces. However, the latter may be compromised to minimize life-threatening off-gassing of sorbed agent from these non-hardened surfaces. ### INTRODUCTION Decon Green^{TM,1}, an environmentally friendly decontaminant that has been under development for nearly a decade, is based on hydrogen peroxide – an environmentally friendly oxidant that leaves no toxic residues owing to its ready decomposition to water and oxygen in the environment. The development of Decon GreenTM draws on the knowledge of many studies demonstrating the use of hydrogen peroxide to decontaminate chemical warfare agents; some nearly 50 years old. For example, early studies by Epstein et al.² and Larsson³ showed that GB readily reacts with perhydroxyl ion (basic peroxide). Decades later, Yang et al.⁴ reported that VX similarly undergoes rapid perhydrolysis, in a selective manner, to form non-toxic ethyl methylphosphonate (EMPA); thus avoiding formation of toxic EA-2192 (*S*-(2-diisopropylamino) ethyl methylphosphonothioate). Shortly thereafter, Drago et al.⁵ found that hydrogen peroxide activated baking soda, forming its monoperoxocarbonate, was very effective for the selective oxidation of HD to its non-vesicant sulfone. At the conclusion of this latter study, it was recognized by Wagner and Yang⁶ that hydrogen peroxide could be used to construct a decontamination solution effective for all three classes of chemical warfare agents: nerve agents G and V; and blister agent HD. The development of Decon GreenTM then began in earnest. Early formulations of Decon GreenTM developed by Wagner et al.⁷ utilized three simple components: baking soda, hydogen peroxide and an alcohol co-solvent; the latter ingredient added mainly to dissolve water-insoluble HD. However, it soon became apparent that more basic solutions were required to effectively react with realistic quantities of VX, at which point the more basic carbonate, e.g. K_2CO_3 , was utilized. Yet this decreased the effectiveness of such formulas for HD oxidation as the formation of the needed monoperoxocarbonate is curtailed at higher pH.⁸ Wagner et al.⁸ then began utilizing molybdate, e.g. K_2MoO_4 , which forms the active oxidant tetraperoxomolybdate in the presence of hydrogen peroxide. Moreover, tetraperoxomolybdate is stable at basic pH and was found to be about two orders of magnitude more effective for selective HD oxidation than monoperoxocarbonate.⁸ Therefore molybdate replaced | maintaining the data needed, and c
including suggestions for reducing | lection of information is estimated to
ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding an
DMB control number. | ion of information. Send comments
arters Services, Directorate for Info | regarding this burden estimate or regarding this burden estimate or regarding the rega | or any other aspect of the property of the contract con | nis collection of information,
Highway, Suite 1204, Arlington | | | |--|---|--|--|--|--|--|--| | 1. REPORT DATE
17 NOV 2004 | | 2. REPORT TYPE N/A | 3. DATES COVERED | | | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT | NUMBER | | | | Decon Green | 5b. GRANT NUMBER | | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | | | | | 6. AUTHOR(S) | 5d. PROJECT NUMBER | | | | | | | | | | | | 5e. TASK NUMBER | | | | | | | 5f. WORK UNIT NUMBER | | | | | | | | ZATION NAME(S) AND AE
ood Chemical Biolog
) | | en Proving | 8. PERFORMING
REPORT NUMB | G ORGANIZATION
ER | | | | 9. SPONSORING/MONITO | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | | | | | 12. DISTRIBUTION/AVAII Approved for publ | LABILITY STATEMENT
ic release, distributi | on unlimited | | | | | | | | otes
49, 2004 Scientific Cland on 15-17 Nove | | nical and Biologic | al Defense R | esearch. Held in | | | | 14. ABSTRACT | | | | | | | | | 15. SUBJECT TERMS | | | | | | | | | 16. SECURITY CLASSIFICATION OF: 17. LIMITATION C ABSTRACT | | | | 18. NUMBER
OF PAGES | 19a. NAME OF
RESPONSIBLE PERSON | | | | a. REPORT
unclassified | b. ABSTRACT
unclassified | c. THIS PAGE
unclassified | UU | 3 | RESPONSIBLE PERSON | | | **Report Documentation Page** Form Approved OMB No. 0704-0188 carbonate as the preferred oxidation catalyst for HD in Decon GreenTM. It should be noted that molybdate is an essential mineral and is an ingredient in vitamins. Thus the inclusion of molybdate in Decon GreenTM is in keeping with the environmentally friendly philosophy relied upon for the development of the decontaminant: "if you can eat it or put it on your skin, it is OK to use it as an ingredient in the decontaminant". At the same time molybdate was being examined, microemulsions were also developed using solvents commonly found in cosmetics and surfactants routinely employed in agricultural spraying; again in keeping with the principle of selecting and employing only environmentally friendly ingredients. In the current manuscript, data is reported for the decontamination of GD, VX, and HD on CARC painted surfaces to demonstrate the effectiveness of Decon GreenTM for the decontamination of these chemical agents. Additional data is given for *Bacillus anthracis* and *Bacillus stearothermophilus* demonstrating that Decon GreenTM is also effective against bio agents. #### RESULTS AND DISCUSSION Table 1 shows results for an initial formula, Decon GreenTM "Classic", as compared to DS2. It can be seen that Decon GreenTM Classic is either comparable to, or in most cases superior to DS2 for the decontamination of HD, THD (thickened HD), TGD (thickened GD), and VX. Table 2 gives results for the decontamination of *Bacillus anthracis* spores by Decon GreenTM Classic and HTH. Thus besides being a superior chem decon, Decon GreenTM Classic is also a superior bio decon. TABLE 1. Decontamination of HD, THD, TGD, and VX on CARC-Painted Panels^a Decon Green TM Classic vs. DS2 | | HD | | THD | | TGD | | VX | | |-----------------------------------|-------|--------|-------|--------|-------|--------|-------|--------| | Decon | Cont. | Resid. | Cont. | Resid. | Cont. | Resid. | Cont. | Resid. | | Decon Green TM Classic | 5.7 | 17.5 | 1.8 | 6.1 | 3.0 | 12.9 | 3.3 | 39.5 | | DS2 | 5.2 | 54.1 | 2.3 | 7.2 | 3.0 | 23.9 | 3.6 | 77.0 | ^aInitial contamination level 10 g/m². Agent dwell time 1 hour. 15 min decontamination time. Contact hazard and residual agent expressed in µg/cm². Average of six replicates reported. TABLE 2. Decontamination of *Bacillus anthracis*: Decon GreenTM Classic vs. HTH^a | Decon | Challenge | CFU ^b Recovered | Log Kill | |-----------------------------------|---------------------|----------------------------------|----------| | Decon Green TM Classic | 2.5×10^{8} | < 10 (no viable spores detected) | > 8-log | | 0.8 % HTH | 2×10^7 | 3.2×10^{6} | < 1-log | ^a15 min decontamination time. ^bColony-forming units. Although Decon GreenTM Classic performed quite well compared to DS2, it was desired to develop a new formula that would be less harsh on "soft" materials such as plastic, rubber and painted surfaces. This concern resulted in the development of New Decon GreenTM. Results for this decontaminant, compared to Decon GreenTM Classic, are given in Table 3. It can be readily seen from these results that New Decon GreenTM, although less penetrating and therefore less harmful to soft materials, is not as effective as Decon TABLE 3. Decontamination of HD, THD, TGD, and VX on CARC-Painted Panels^a New Decon GreenTM vs. Decon GreenTM Classic | | HD | | THD | | | TGD | | | VX | | | | |-------------------------------|-----------------|-----------------|-------|-------|-------|------|-----|------|------|------|------|------| | Decon | C1 ^b | C2 ^c | Res. | C1 | C2 | Res. | C1 | C2 | Res. | C1 | C2 | Res. | | New Decon Green TM | 43.3 | 12.26 | 154.6 | 115.1 | 12.97 | 29.9 | 9.1 | 1.84 | 14.9 | 4.14 | 1.28 | 53.8 | | Decon Green TM | 17.2 | 3.56 | 57.0 | 16.38 | 2.65 | 91.3 | 5.2 | 1.66 | 13.3 | 1.46 | 0.37 | 47.2 | | Classic | | | | | | | | | | | | | ^aInitial contamination level 10 g/m^2 . Agent dwell time 1 hour. 15 min decontamination time. Contact hazard and residual agent expressed in $\mu \text{g/cm}^2$. Average of six replicates reported. ^b0 − 15 min contact hazard. ^c45 − 60 min contact hazard. GreenTM Classic for the decontamination of CARC painted surfaces. Table 4 shows decontamination results for *Bacillus stearothermophilus* spores, a species considered extremely resistant to peroxide sterilants. As seen for Decon GreenTM Classic, New Decon GreenTM retains excellent bio decon efficacy. TABLE 4. Decontamination of *Bacillus stearothermophilus* by New Decon GreenTM | Challenge | CFU Recovered | Log Kill | | | | |-----------------|---------------------------|----------|--|--|--| | 1×10^5 | No viable spores detected | ≥ 5-log | | | | ^a10 min decontamination time. ^bColony-forming units. The data obtained for both Decon GreenTM Classic and New Decon GreenTM show that viable peroxide-based decontaminants may be formulated which are superior to conventional, environmentally-harmful decontaminants. For soft materials such as plastics, rubber and painted surfaces, decontaminants which penetrate well provide the best and most thorough decontamination. However, such soft materials may be compromised by harsh decontaminants. This is perhaps a small price to pay when the health and welfare of personnel is considered. #### **CONCLUSION** Environmentally friendly, hydrogen peroxide-based decontaminants such as Decon GreenTM may be formulated which are superior to conventional, environmentally harmful decontaminants. Moreover, these decontaminants simultaneously afford the rapid and effective decontamination of both chem and bio agents. However, penetrating formulas are needed to adequately decontaminate soft materials and these materials may be compromised during the decontamination process. #### **ACKNOWLEDGEMENTS** We thank the late Prof. Russell S. Drago and Prof. Clifford A. Bunton for many helpful discussions; Mr. Abraham L. Turetsky and Dr. Vipin K. Rastogi for performing the *Bacillus anthracis* work; and Dr. Dan Klein, STERIS Corp., for performing the *Bacillus stearothermophilus* study. ## **REFERENCES** - 1. Trademark applied for. - 2. Epstein, J.; Demek, M. M.; Rosenblatt, D. H. *J. Org. Chem.*, **1956**, *21*, 796 797, and references therein - 3. Larsson, L. Acta. Chem. Scand., 1958, 12, 723 730. - 4. Yang. Y.-C.; Szfraniec, L. L.; Beaudry, W. T.; Bunton, C. A. J. Org. Chem., 1993, 58, 6964 –6965. - 5. Drago, R. S.; Frank, K. M.; Wagner, G.; Yang, Y.-C. In "Proc. 1997 ERDEC Sci. Conf. Chem. Bio. Def. Res." ERDEC-SP-063; U.S. Army Edgewood Research, Development and Engineering Center: Aberdeen Proving Ground, MD, 1998; pp 341-342. - 6. Wagner, G. W.; Yang, Y.-C. Universal decontaminating solution for chemical warfare agents. U.S. Patent 6,245,957, 2001. - 7. Wagner, G. W.; Yang, Y.-C. In "Proc. 1998 ERDEC Sci. Conf. Chem. Bio. Def. Res." ECBC-SP-004; U.S. Army Edgewood Chemical Biological Center: Aberdeen Proving Ground, MD, 1999; pp 293 299. - 8. Wagner, G. W.; Procell, L. R.; Yang, Y.-C.; Bunton, C. A. Langmuir, 2001, 17, 4809 4811. - 9. Wagner, G. W.; Procell, L. R.; Yang, Y.-C.; Bunton, C. A. Molybdate/peroxide microemulsions useful for decontamination of chemical warfare agents. U.S. Patent 6,723,891, 2004. - 10. Wagner, G. W.; Yang, Y.-C. Ind. Eng. Chem. Res., 2002, 41, 1925-1928.